Partial autocorrelation parameterization for subset autoregression

نویسندگان
چکیده

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Partial Autocorrelation Parameterization for Subset Autoregression

A new version of the partial autocorrelation plot and a new family of subset autoregressive models are introduced. A comprehensive approach to model identification, estimation and diagnostic checking is developed for these models. These models are better suited to efficient model building of high-order autoregressions with long time series. Several illustrative examples are given.

متن کامل

Modified Burg Algorithms for Multivariate Subset Autoregression

Lattice algorithms for estimating the parameters of a multivariate autoregression are generalized to deal with subset models in which some of the coefficient matrices are constrained to be zero. We first establish a recursive prediction-error version of the empirical Yule-Walker equations. The estimated coefficient matrices obtained from these recursions are the coefficients of the best linear ...

متن کامل

Improved Subset Autoregression: With R Package

The FitAR R (R Development Core Team 2008) package that is available on the Comprehensive R Archive Network is described. This package provides a comprehensive approach to fitting autoregressive and subset autoregressive time series. For long time series with complicated autocorrelation behavior, such as the monthly sunspot numbers, subset autoregression may prove more feasible and/or parsimoni...

متن کامل

Subset Types and Partial Functions

A classical higher-order logic PFsub of partial functions is defined. The logic extends a version of Farmer’s logic PF by enriching the type system of the logic with subset types and dependent types. Validity in PFsub is then reduced to validity in PF by a translation.

متن کامل

Partial Update Single Lag Autocorrelation Minimization for Channel Shortening

In this paper a novel partial update single lag autocorrelation minimization (PUSLAM) algorithm is proposed. This algorithm has low computational complexity whilst retaining essentially identical performance to the single lag autocorrelation minimization (SLAM) algorithm proposed by Nawaz and Chambers. Simulation studies on eight representative digital subscriber line channels show the ability ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Journal of Time Series Analysis

سال: 2006

ISSN: 0143-9782,1467-9892

DOI: 10.1111/j.1467-9892.2006.00481.x